Eski Mısırlılar ve Yunanlılar tarafından keşfedilmiş, mimaride ve sanatta kullanılmıştır. Göze çok hoş gelen bir orandır.
Bir doğru parçasının (AB) Altın Oran'a uygun biçimde iki parçaya bölünmesi gerektiğinde, bu doğru öyle bir noktadan (C) bölünmelidir ki; küçük parçanın (AC) büyük parçaya (CB) oranı, büyük parçanın (CB) bütün doğruya (AB) oranına eşit olsun.
Altın Oran, pi (π) gibi irrasyonel bir sayıdır ve ondalık sistemde yazılışı; 1.618033988749894...'tür. (noktadan sonraki ilk 15 basamak). Bu oranın kısaca gösterimi:
Allah kainatı kusursuz bir düzen içinde yaratmıştır. Uzayda, yeryüzünde, canlılarda, bitkilerde olağanüstü bir uyum, insanı hayrete düşüren ve hayranlık uyandıran harikalıklar vardır. Rabbimiz bu olağanüstülüğü Mülk Suresi'nde şu şekilde bildirilmektedir:
... Rahman (olan Allah)ın yaratmasında hiçbir 'çelişki ve uygunsuzluk' (tefavüt) göremezsin. İşte gözü(nü) çevirip-gezdir; herhangi bir çatlaklık (bozukluk ve çarpıklık) görüyor musun? Sonra gözünü iki kere daha çevirip-gezdir; o göz (uyumsuzluk bulmaktan) umudunu kesmiş bir halde bitkin olarak sana dönecektir. (Mülk Suresi, 3-4)İnsanoğlu kainatı, doğayı, hayvanları, bitkileri ve insan vücudunu inceledikçe Allah'ın sonsuz sanatının örneklerini daha yakından fark eder ve bu yaratılış harikalıkları kişinin imanda derinleşmesine, Allah korkusunun ve Allah sevgisinin artmasına vesile olur.
Bir ayçiçeğinin yapraklarında, salyangozun kabuğunda, çam kozalağında ya da parmaklarımızın uzunluğunda bulunan matematiksel oran da bu olağanüstülüklerden bir tanesidir. Bilim adamlarının "Altın oran" ismini verdikleri bu hayranlık uyandıran uyumu şu şekilde tanımlamak mümkündür:
İtalya'nın Pisa Kenti'nden "Leonardo Pisano" veya lakabı olan "Fibonacci", Ortaçağ'ın en etkili matematikçisi olarak anılır. Fibonacci'nin bulduğu sayı dizisi, kendi adı olan Fibonacci sayıları olarak anılmaktadır. Bu sayıların özelliği, dizideki sayılardan her birinin kendisinden önce gelen iki sayının toplamından oluşmasıdır.1
Fibonacci dizisi 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, ... şeklinde ilerlemektedir.
Dizideki sayıları bir öncekine böldüğünüzde, birbirine çok yakın sayılar elde edersiniz. Hatta serideki 13. sırada yer alan sayıdan sonra bu sayı sabitlenir. İşte bu sayı "altın oran" olarak adlandırılan 1,618'dir.
233 / 144 = 1,618 377 / 233 = 1,618 610 / 377 = 1,618 987 / 610 = 1,618 1597 / 987 = 1,618 2584 / 1597 = 1,618 |
MİCRODÜNYADA ALTIN ORAN
Geometrik şekiller sadece üçgen, kare veya beşgen, altıgen ile kısıtlı değildir. Bu saydığımız şekiller değişik şekillerde de biraraya gelerek yeni üç boyutlu geometrik şekiller oluşturabilirler. Bu konuda ilk olarak küp ve piramit örnek olarak verilebilir. Ancak bunların dışında, günlük hayatta hiç karşılaşmadığımız hatta ismini dahi ilk defa duyduğumuz tetrahedron (düzgün dört yüzlü), oktahedron, dodekahedron ve ikosahedron gibi üç boyutlu şekillerde vardır. Dodekahadron 13 tane beşgenden, ikosahedron ise 20 adet üçgenden oluşur. Bilim adamları bu şekilleri matematiksel olarak birbirine dönüşebileceğini ve bu dönüşümün altın orana bağlı oranlarla gerçekleştiğini bulmuşlardır.
Miroorganizmalarda altın oran barındıran üç boyutlu formlar oldukça yaygındır. Birçok virüs ikosahedron yapısında bir biçime sahiptir. Bunların en ünlüsü Adeno virüsüdür. Adeno virüsünün protein kılıfı, 252 adet protein alt biriminin düzenli bir biçimde dizilmesi ile oluşur. İkosahedronun köşelerinde yer alan 12 alt birim ise beşgen prizmalar biçimdedir. Bu köşelerden diken benzeri yapılar uzanır.
Virüslerin altın oranları bünyesinde barındıran formlarda olduğunu tespit eden ilk kişi 1950'li yıllarda Londra'daki Birkbeck Koleji'nden A. Klug ile D. Caspar'dır.(J. H. Mogle, et al., "The Stucture and Function of Viruses", Edward Arnold, London, 1978.) Üzerinde ilk tespit yapılan virüs ise Polyo virüsüdür. Rhino 14 virüsü de Polyo virüsü ile aynı formu gösterir.
Peki acaba virüsler neden biz insanların zihnimizde canlandırmasını bile zorlukla yapabildiğimiz, böyle altın orana dayalı özel bir formlara sahiptirler? Bu formların kaşifi A. Klug bu konuyu şöyle açıklıyor:
Miroorganizmalarda altın oran barındıran üç boyutlu formlar oldukça yaygındır. Birçok virüs ikosahedron yapısında bir biçime sahiptir. Bunların en ünlüsü Adeno virüsüdür. Adeno virüsünün protein kılıfı, 252 adet protein alt biriminin düzenli bir biçimde dizilmesi ile oluşur. İkosahedronun köşelerinde yer alan 12 alt birim ise beşgen prizmalar biçimdedir. Bu köşelerden diken benzeri yapılar uzanır.
Virüslerin altın oranları bünyesinde barındıran formlarda olduğunu tespit eden ilk kişi 1950'li yıllarda Londra'daki Birkbeck Koleji'nden A. Klug ile D. Caspar'dır.(J. H. Mogle, et al., "The Stucture and Function of Viruses", Edward Arnold, London, 1978.) Üzerinde ilk tespit yapılan virüs ise Polyo virüsüdür. Rhino 14 virüsü de Polyo virüsü ile aynı formu gösterir.
Peki acaba virüsler neden biz insanların zihnimizde canlandırmasını bile zorlukla yapabildiğimiz, böyle altın orana dayalı özel bir formlara sahiptirler? Bu formların kaşifi A. Klug bu konuyu şöyle açıklıyor:
"Caspar ile ben, küresel bir virüs kılıfı için optimum tasarımın ikosahedron tarzı bir simetriye dayandığını gösterdik. Böyle bir düzenleme bağlantılardaki sayıyı en aza indirir... Buckminster Fuller'in yarı küresel jeodezik kubbelerinden(Buckminster Fuller'in Jeodezik Kubbe tasarımları hakkında ayrıntılı bilgi için bakınız: Teknoloji Doğayı Taklit Ediyor, Biyomimetik, Harun Yahya, Global Yayıncılık, İstanbul.) çoğu da benzer bir geometriye göre inşa edilirler. Bu kubbelerin oldukça ayrıntılı bir şemaya uyularak monte edilmeleri gerekir. Halbuki virüs, bir virüs kılıfı, alt birimlerinin esnekliğinden ötürü kendi kendini inşa eder."(A. Klug "Molecules on Grand Scale", New Scientist, 1561:46, 1987.)
Klug'un bu açıklaması çok açık bir gerçeği bir kez daha ortaya koymaktadır. Bilim adamlarının "en basit ve en küçük canlı parçalarından biri"(Mehmet Suat Bergil, Doğada/Bilimde/Sanatta, Altın Oran, Arkeoloji ve Sanat Yayınları, 2.Basım, 1993, s. 82) olarak gördükleri virüslerde bile hassas bir planlama ve akıllı bir tasarım vardır. Bu tasarım, dünyanın önde gelen mimarlarından Buckminster Fuller'ın gerçekleştirdiği tasarımlardan çok daha başarılı ve üstündür.
Dodekahedron ile ikosahedron, tek hücreli deniz yaratıkları olan ışınlıların silisten yapılma iskeletlerinde de ortaya çıkar.
Işınlılar (radiolaria), her köşesinden birer yalancı ayak çıkan düzgün Dodekahedron gibi, bu iki geometrik formdan kaynaklanan yapıları, yüzeylerindeki çok çeşitli oluşumlarla birlikte değişik güzellikteki bedenleri oluştururlar.(Mehmet Suat Bergil, Doğada/Bilimde/Sanatta, Altın Oran, Arkeoloji ve Sanat Yayınları, 2.Basım, 1993, s. 85)
Büyüklükleri bir milimetreden daha küçük olan bu organizmalara örnek olarak, ikosahedron yapılı Circigonia Icosahedra ile dodekahedran iskeletli Circorhegma Dodecahedra'nın adları verilebilir.(Değişik ışınlı bedenleri için bakınız: "H. Weyl, Synnetry, Princeton, 1952.)Işınlılar (radiolaria), her köşesinden birer yalancı ayak çıkan düzgün Dodekahedron gibi, bu iki geometrik formdan kaynaklanan yapıları, yüzeylerindeki çok çeşitli oluşumlarla birlikte değişik güzellikteki bedenleri oluştururlar.(Mehmet Suat Bergil, Doğada/Bilimde/Sanatta, Altın Oran, Arkeoloji ve Sanat Yayınları, 2.Basım, 1993, s. 85)
İNSAN VÜCUDU VE ALTIN ORAN
İNSAN VÜCUDUNDA ALTIN ORAN
Bedenin çeşitli kısımları arasında var olduğu öne sürülen ve yaklaşık altın oran değerlerine uyan "ideal" orantı ilişkileri genel olarak bir şema halinde gösterilebilir.(J. Cumming, Nucleus: Architecture and Building Construction, Longman, 1985.)
Aşağıdaki şemada yer alan M/m oranı her zaman altın orana denktir: M/m=1,618
İnsan vücudunda altın orana verilebilecek ilk örnek; göbek ile ayak arasındaki mesafe 1 birim olarak kabul edildiğinde, insan boyunun 1,618'e denk gelmesidir. Bunun dışında vücudumuzda yer alan diğer bazı altın oranlar şöyledir:
Omuz hizasından baş ucuna olan mesafe / Kafa boyu,
Göbek-baş ucu arası mesafe / Omuz hizasından baş ucuna olan mesafe,
Göbek-diz arası / Diz-ayak ucu arası.
İnsan Eli
Elinizi derginin sayfasından çekip ve işaret parmağınızın şekline bir bakın. Muhtemelen orada da altın orana şahit olacaksınız.
Parmaklarımız üç boğumludur. Parmağın tam boyunun İlk iki boğuma oranı altın oranı verir (baş parmak dışındaki parmaklar için). Ayrıca orta parmağın serçe parmağına oranında da altın oran olduğunu fark edebilirsiniz. (Mehmet Suat Bergil, Doğada/Bilimde/Sanatta, Altın Oran, Arkeoloji ve Sanat Yayınları, 2.Basım, 1993, s. 87.)
2 eliniz var, iki elinizdeki parmaklar 3 bölümden oluşur. Her elinizde 5 parmak vardır ve bunlardan sadece 8'i altın orana göre boğumlanmıştır. 2, 3, 5 ve 8 fibonocci sayılarına uyar.
İnsan Yüzünde Altın Oran
İnsan yüzünde de birçok altın oran vardır. Ancak bunu elinize hemen bir cetvel alıp insanların yüzünde ölçüler almayı denemeyin. Çünkü bu oranlandırma, bilim adamları ve sanatkarların beraberce kabul ettikleri "ideal bir insan yüzü" için geçerlidir.
Örneğin üst çenedeki ön iki dişin enlerinin toplamının boylarına oranı altın oranı verir. İlk dişin genişliğinin merkezden ikinci dişe oranı da altın orana dayanır. Bunlar bir dişçinin dikkate alabileceği en ideal oranlardır. Bunların dışında insan yüzünde yer alan diğer bazı altın oranlar şöyledir:
Yüzün boyu / Yüzün genişliği,
Dudak- kaşların birleşim yeri arası / Burun boyu,
Yüzün boyu / Çene ucu-kaşların birleşim yeri arası,
Ağız boyu / Burun genişliği,
Burun genişliği / Burun delikleri arası,
Göz bebekleri arası / Kaşlar arası.
Örneğin üst çenedeki ön iki dişin enlerinin toplamının boylarına oranı altın oranı verir. İlk dişin genişliğinin merkezden ikinci dişe oranı da altın orana dayanır. Bunlar bir dişçinin dikkate alabileceği en ideal oranlardır. Bunların dışında insan yüzünde yer alan diğer bazı altın oranlar şöyledir:
Yüzün boyu / Yüzün genişliği,
Dudak- kaşların birleşim yeri arası / Burun boyu,
Yüzün boyu / Çene ucu-kaşların birleşim yeri arası,
Ağız boyu / Burun genişliği,
Burun genişliği / Burun delikleri arası,
Göz bebekleri arası / Kaşlar arası.
Akciğerlerdeki Altın Oran Amerikalı fizikçi B. J. West ile doktor A. L. Goldberger, 1985-1987 yılları arasında yürüttükleri araştırmalarında(A. L. Goldberger, et al., "Bronchial Asymmetry and Fibonacci Scaling." Experientia, 41 : 1537, 1985.), akciğerlerin yapısındaki altın oranının varlığını ortaya koydular. Akciğeri oluşturan bronş ağacının bir özelliği, asimetrik olmasıdır. Örneğin, soluk borusu, biri uzun (sol) ve diğeri de kısa (sağ) olmak üzere iki ana bronşa ayrılır. Ve bu asimetrik bölünme, bronşların ardışık dallanmalarında da sürüp gider. (E. R. Weibel, Morphometry of the Human Lung, Academic Press, 1963.) İşte bu bölünmelerin hepsinde kısa bronşun uzun bronşa olan oranının yaklaşık olarak 1/ 1,618 değerini verdiği saptanmıştır. | |
Akciğerlerdeki bronşlar altın orana göre dallanma yapar. |
DNA'da ALTIN ORAN
Canlıların tüm fiziksel özelliklerinin depolandığı molekül de altın orana dayandırılmış bir formda yaratılmıştır. yaşam için program olan DNA molekülü altın orana dayanmıştır. DNA düşey doğrultuda iç içe açılmış iki sarmaldan oluşur. Bu sarmallarda her birinin bütün yuvarlağı içindeki uzunluk 34 angström genişliği 21 angström'dür. (1 angström; santimetrenin yüz milyonda biridir) 21 ve 34 art arda gelen iki Fibonacci sayısıdır.
KAR KRİSTALLERİNDE ALTIN ORAN
Altın oran kristal yapılarda da kendini gösterir. Bunların çoğu gözümüzle göremeyeceğimiz kadar küçük yapıların içindedir. Ancak kar kristali üzerindeki altın oranı gözlerinizle göre bilirsiniz. Kar kristalini oluşturan kısalı uzunlu dallanmalarda, çeşitli uzantıların oranı hep altın oranı verir.(Emre Becer, "Biçimsel Uyumun Matematiksel Kuralı Olarak, Altın Oran", Bilim ve Teknik Dergisi, Ocak 1991, s.16.)
UZAYDA ALTIN ORAN
Evrende, yapısında altın oran barındıran birçok spiral galaksi bulunur.
FİZİKTE ALTIN ORAN
KAR KRİSTALLERİNDE ALTIN ORAN
Altın oran kristal yapılarda da kendini gösterir. Bunların çoğu gözümüzle göremeyeceğimiz kadar küçük yapıların içindedir. Ancak kar kristali üzerindeki altın oranı gözlerinizle göre bilirsiniz. Kar kristalini oluşturan kısalı uzunlu dallanmalarda, çeşitli uzantıların oranı hep altın oranı verir.(Emre Becer, "Biçimsel Uyumun Matematiksel Kuralı Olarak, Altın Oran", Bilim ve Teknik Dergisi, Ocak 1991, s.16.)
UZAYDA ALTIN ORAN
Evrende, yapısında altın oran barındıran birçok spiral galaksi bulunur.
FİZİKTE ALTIN ORAN
L. Pisano Fibonacci |
Fibonacci dizileri ve altın oran ile fizik biliminin sahasına giren konularda da karşılaşırız:
"Birbiriyle temas halinde olan iki cam tabakasının üzerine bir ışık tutulduğunda, ışığın bir kısmı öte yana geçer, bir kısmı soğurulur, geriye kalanı da yansır. Meydana gelen, bir, 'çoklu yansıma' olayıdır. Işının tekrar ortaya çıkmadan önce camın içinde izlediği yolların sayısı, ışının maruz kaldığı yansımaların sayısına bağlıdır. Sonuçta, tekrar ortaya çıkan ışın sayılarını belirlediğimizde bunların Fibonacci sayılarına uygun olduğunu anlarız."(V.E. Hoggatt, Jr. Ve Bicknell-Johnson, Fibonacci Quartley, 17:118, 1979.)
Doğada birbiriyle ilişkisiz canlı veya cansız pek çok yapının belli bir matematik formülüne göre şekillenmiş olması onların özel olarak tasarlanmış olduklarının en açık delillerinden biridir. Altın oran, sanatçıların çok iyi bildikleri ve uyguladıkları bir estetik kuralıdır. Bu orana bağlı kalarak üretilen sanat eserleri estetik mükemmelliği temsil ederler. Sanatçıların taklit ettikleri bu kuralla tasarlanan bitkiler, galaksiler, mikroorganizmalar, kristaller ve canlılar Allah'ın üstün sanatının birer örneğidirler. Allah Kuran'da herşeyi bir ölçüyle yarattığını bildirmektedir. Bu ayetlerden bazıları şöyledir:
İŞİTME VE DENGE ORGANINDA ALTIN ORAN"... Allah, herşey için bir ölçü kılmıştır." (Talak Suresi, 3)"... O'nun Katında herşey bir miktar (ölçü) iledir." (Ra'd Suresi, 8)
BOYNUZ VE DİŞLERDE ALTIN ORAN
Filler ile soyu tükenen mamutların dişleri, aslanların tırnakları ve papağanların gagalarında logaritmik sarmal kökenli yay parçalarına göre biçimlenmiş örneklere rastlanır. Eperia örümceği de ağını daima logaritmik sarmal şeklinde örer. Mikroorganizmalardan planktonlar arasında, globigerinae, planorbis, vortex, terebra, turitellae ve trochida gibi minicik canlıların hepsinin sarmala göre inşa edilmiş bedenleri vardır.
BİTKİLERDE ALTIN ORAN
YAPRAKLAR VE ALTIN ORAN
Çevremizdeki bitkilere, ağaçlara baktığımızda dalların birçok yaprakla kaplı olduğunu görürüz. Uzaktan baktığımızda, dalların ve yaprakların gelişigüzel, dağınık bir şekilde dizilmiş olduklarını düşünebiliriz. Oysa, her ağaçta, hangi dalın nereden çıkacağı ve yaprakların dal çevresinde dizilişleri, hatta çiçeklerin simetrik şekilleri dahi belirli sabit kurallar ve mucizevi ölçülerle belirlenmiştir. Bitkiler ilk yaratıldıkları günden beri bu matematik kurallarına harfi harfine uyarlar. Yani hiçbir yaprak veya hiçbir çiçek tesadüfen ortaya çıkmaz. Bir ağaçta kaç dal olacağı, dalların nereden çıkacağı, bir dal üzerinde kaç yaprak olacağı ve bu yaprakların hangi düzenlemeyle yerleşeceği önceden bellidir. Ayrıca her bitkinin kendine özgü dallanma ve yaprak diziliş kuralları vardır. Bilim adamları bitkileri sadece bu dizilişlerine göre tanımlayıp sınıflandırabilmektedirler. Olağanüstü olan ise, örneğin Çin'deki bir kavak ağacı ile İngiltere'deki bir kavak ağacının aynı ölçü ve kurallardan haberdar olmaları, aynı oranları uygulamalarıdır. Her bitkiyi kendine özgü matematiksel hesaplarla en estetik şekilde yaratan, tesadüfler olamaz elbette. Tüm bu estetiğin ve kusursuz hesaplamalarla yapılan tasarımın yaratıcısı sonsuz ilim sahibi olan Allah'tır. Kuran'da da bildirildiği gibi; Göklerin ve yerin mülkü O'nundur; çocuk edinmemiştir. O'na mülkünde ortak yoktur, herşeyi yaratmış, ona bir düzen vermiş, belli bir ölçüyle takdir etmiştir. (Furkan Suresi, 2)
Bir yapraktan başlayıp, gövde etrafında dönerek aynı hizadaki diğer yaprağa rastlayıncaya kadar yapılan tur sayısı ile, bu turlar sırasında karşılaşılan yaprak sayıları bize Fibonacci sayısını verir. Eğer saymaya ters yönden başlarsak bu kez aynı yaprak sayısı için farklı tur sayısı elde ederiz. Her iki yöndeki tur sayısı ile bu turlar sırasında karşılaşılan yaprak sayısı bize üç ardışık Fibonacci sayısını verir. |
Aynı türe ait her ağacın bu orandan haberdar olup, kendi cinsi için belirlenmiş orana uyması büyük bir mucizedir. Örneğin bir muz ağacı bu oranı nereden bilir ve bu orana nasıl uyabilir? Bu hesaba göre, her muz ağacının çevresinde bir yapraktan başlayıp 8 kere tur attığınızda, aynı hizadaki diğer yaprağa rastlayacaksınız. Ve bu turlar arasında 3 yaprakla karşılaşacaksınız. Güney Afrika'dan Latin Amerika'ya kadar nereye giderseniz gidin, bu oran şaşmayacaktır. Sadece böyle bir yaprak diziliş oranının olması dahi canlıların tesadüfen oluşmadıklarını, kusursuz ve son derece kompleks bir oran, hesap, plan ve tasarımla yaratıldıklarını gösteren önemli bir delildir. Canlıların genetik yapılarına böyle bir oranı kodlayan, onları bu bilgi ve özellikle yaratan üstün bir ilim ve akıl sahibi olan Allah'tır.
Yandaki resimde üstte görülen bitkide, ilk yaprağın hemen üstündeki yaprağa ulaşmak için saat yönünde üç tur dönmek ve yol üzerinde 5 yaprak geçmek gerekir. Saatin aksi yönünde dönüldüğünde ise sadece iki tura ihtiyacımız olacaktır. Dikkat ederseniz elde edilen sayılar 2, 3 ve 5 ardışık Fibonacci sayılarıdır. Alttaki bitkide ise, 8 yaprak geçerek saat yönünde 5 tur, aksi yönde ise 3 tur gövde çevresinde dönülür. Bu kez 3, 5 ve 8 ardışık Fibonacci sayılarını elde ederiz. Bu sonuçları üstteki bitki için: saat yönündeki tur için yaprak başına 3/5; ikinci bitki içinse yaprak başına 5/8 dönüş olarak ifade edebiliriz. |
Tohum açıldıktan sonra çıkan iki yaprak, 180oC'lik bir açıyla karşılıklı olarak dizilmişlerdir. İlk iki yapraktan sonra gelişen diğer iki yaprak ise maksimum dağılımı sağlamak için zıt tarafta, birinci çifte 90oC'lik açı yaparak gelişir. |
1, 1, 2 (1+1), 3 (1+2), 5 (2+3), 8 (3+5), 13 (5+8), 21 (8+13), 34 (13+21), 55 (21+34), 89 (34+55), 144 (55+89), 233 (89+144), 377 (144+233), ...(Guy Murchie, The Seven Mysteries Of Life, s. 58-59)
Bu özel dizilim, bu kuralı keşfeden Fibonacci isimli matematikçinin adı ile anılır ve "Fibonacci serisi" olarak bilinir. Bu kural estetik mükemmellik manasına gelir ve resim, heykel, mimari gibi alanlarda temel bir ölçü olarak kullanılmaktadır. Doğada çok sık rastlanılan bu oran bitkilerdeki ince hesap ve tasarımı anlamada önemli bir anahtardır.
Fibonacci dizisi bitkilerdeki ince hesap ve tasarımı anlamada önemli bir anahtardır. Yukarıdaki çiçekler, Fibonacci dizisine göre sıralanmış olan yapraklardaki düzen ve estetiği göstermektedir. Çevremizde gördüğümüz ağaç ve çiçeklerin yaprakları bize ilk bakışta rastgele dizilmiş gibi görünse de, aslında olağanüstü kompleks bir plan ve matematiksel hesapla sıralanmışlardır. Yukarıda armut ağacındaki yaprak dizilimi görülmektedir. Armut ağacında bir yaprağın bulunduğu yerden bir iplik geçirir ve ipliği geçirmeye başladığımız yapraktan itibaren tekrar bu yaprağın hizasına rastlayan üstteki yaprağa gelinceye kadar ipliği dalın etrafında çevirecek olursak arada 5 yaprak geçeriz. Ve ancak 6. yaprağın, başladığımız ilk yaprakla bir hizaya gelmiş olduğunu ve bu esnada ipliğin de dalın üzerinde iki defa dolanmış bulunduğunu görürüz. O halde 2 daire üzerinde 5 yaprak bulunduğunu anlatmak için bu ağacın yaprak dizilimi 2/5 olarak yazılır. |
Fibonacci dizisi doğada çok sık bir biçimde karşımıza çıkar. Bu sayılar kullanılarak üretilen kesirler, bize "Altın Oran"ı verir. Yani Fibonacci sayılarını aşağıda görüldüğü gibi birbirini takip eden kesirler halinde yazdığımızda, ortaya çıkan bölmelerin tamamı estetik mükemmellik manasına gelen ve çoğu zaman "Altın Oran" adı da verilen sayıdır:
1/1, 1/2, 2/3, 3/5, 5/8, 8/13, 13/21, 21/34, 34/55, 55/89...
Görüldüğü gibi bu yolla elde edilen dizinin terimleri Fibonacci dizisinin birbirini takip eden sayılarının bölümü şeklindedir. Ve bu dizinin terimleri olan oranları çam kozalaklarında (5/8, 8/13), ananas meyvesinde (8/13), papatyanın orta kısmındaki floretlerde (21/34), ayçiçeklerinde (21/34, 34/55, 55/89) sağ ve sol spirallerin sayısı olarak görmekteyiz. İşte bu oran ve bu oran sayesinde ortaya çıkan görüntü, doğadaki çiçeklere, ağaçlara, tohuma, deniz kabuklarına ve daha sayısız canlıya estetik bir mükemmellik kazandırır.
Altın oranın doğadaki yeri bununla da kalmayıp, ideal yaprak açılarında da kendini göstermektedir. Bilindiği gibi bitkilerde yapraklar, dik gelen güneş ışınlarından maksimum yararı sağlamak üzere belli bir açıyla sıralanırlar. Örneğin, 2/5'lik yaprak diverjansına sahip bir bitkide yaprak aralarındaki açı,
2 x 360 derece / 5 = 144 derecedir. (Dr. Sara Akdik, Botanik, Şirketi Mürettibiye Basımevi, İstanbul, 1961, s.105-106)
Yapraklarda karşımıza çıkan sayısal mucizeler bununla da sınırlı değildir. Yaprak yüzeyleri de belirli matematik hesaplarının sonucunda anlaşılabilecek tasarımlara sahiptirler. Yaprağın ortasından geçen damar (midrib) ve ondan çıkarak yaprak yüzeyine dağılan damarlar ve bunların besledikleri dokular, bitkiye belirli bir şekil ve yapı kazandırırlar. Yapraklar çok farklı formlara sahip olmalarına rağmen bu hassas ölçüleri muhafaza ederler.Bitkilerin belirli matematik formüllere göre şekillenmiş olmaları onların özel olarak tasarlanmış olduklarının en açık delillerinden biridir. Bitkinin atomlarında, DNA'sında gördüğümüz hassas ölçüler ve dengeler, bitkinin dış görünümünde de ortaya çıkmaktadır. Bitkinin Güneş'ten maksimum faydalanması gibi hayati amaçların yanısıra, bitkiye estetik bir güzellik kazandıran bu formüller, belirli sayıdaki moleküllerin biraraya gelmesiyle ortaya çıkan renklerle birleştiğinde ortaya olağanüstü manzaralar çıkmaktadır.
Lahana ya da her iki tarafa spiral yönde giden taç yapraklı ayçiçeği gibi sık tohumlu bitkilerin yaprakları, merkezin etrafında sağdan veya soldan dolanırken bir spiral çizerler. Çam kozalaklarının pulları da, sağa ve sola dönen spiraller şeklinde dizilmişlerdir. Eğer bunlar tek tek sayılacak olursa, bulunan sayıların, altın orana dayalı fibonacci dizisinin sayıları olduğu görülür. Tüm bu hesap ve düzende Allah'ın kusursuz yaratışının delilleri bulunmaktadır. |
Yere (gelince,) onu döşeyip-yaydık, onda sarsılmaz-dağlar bıraktık ve onda herşeyden ölçüsü belirlenmiş ürünler bitirdik. (Hicr Suresi, 19)
... Allah, herşey için bir ölçü kılmıştır. (Talak Suresi, 3)
... O'nun katında herşey bir miktar (ölçü) iledir. (Ra'd Suresi, 8)
... Şüphesiz, Allah herşeyin hesabını tam olarak yapandır. (Nisa Suresi, 86)
Bitkiler ilk yaratıldıkları günden beri matematik kurallarına harfi harfine uyarlar. Yani hiçbir yaprak veya hiçbir çiçek tesadüfen ortaya çıkmaz. Bir ağaçta kaç dal olacağı, dalların nereden çıkacağı, bir dal üzerinde kaç yaprak olacağı ve bu yaprakların hangi düzenlemeyle yerleşeceği önceden bellidir. Ayrıca her bitkinin kendine özgü dallanma ve yaprak diziliş kuralları vardır. Bilim adamları bitkileri sadece bu dizilişlerine göre tanımlayıp sınıflandırabilmektedirler.
"Göklerin ve yerin mülkü O'nundur; çocuk edinmemiştir. O'na mülkünde ortak yoktur, herşeyi yaratmış, ona bir düzen vermiş, belli bir ölçüyle takdir etmiştir." (Furkan Suresi, 2)
Farklı dizilişler
Bitki türüne göre değişen bu diziliş şekilleri dairesel veya sarmal yapı şeklindedir. Bu özel dizilişin en önemli sonuçlarından biri yaprakların bir diğerini gölgelemeyecek şekilde yerleşmiş olmalarıdır. Botanikte "yaprak diverjansı" olarak tanımlanan bu oranlara göre bitkilerde yaprakların gövde etrafına dizilişlerindeki düzen belirli sayılarla belirlenmiştir. Bu diziliş son derece kompleks bir hesaba dayanır. Bir yapraktan başlayıp, gövde etrafında dönerek aynı hizadaki diğer yaprağa rastlayıncaya kadar yapmamız gereken tur sayısı (N) ile, bu turlar arasında karşılaştığımız yaprak sayılarını (P), sırasıyla N ve P ile gösterirsek, P/N oranı, bitkilerde "yaprak diverjansı" olarak adlandırılır. Bu oranlar çayır bitkilerinde (otlarda) 1/2, bataklık bitkilerinde 1/3, meyve ağaçlarında (elma) 2/5, muz türlerinde 3/8, soğangillerde 5/13'tür.
Orandaki mucize
Daha karmaşık bir form olan spiral şekline de çok sık rastlanır. Bitkideki bu spiral hareketi gözlemlemek için bir ip kullanılabilir. Bir yaprağın tabanına ip bağlayıp sonra ipi dallara ve budaklara kadar uzatın, geldiğiniz her yaprağın gövdesinde bir kere halka yapın, kavisler mümkün olduğunca düzgün olsun. Bu yöntemle, kara ağaç veya ıhlamur ağacında yaprakların ortalama olarak komşu yaprakta budağın etrafında yarı yol kadar (180 derece) dolandığını görürsünüz; böylece ip yaprak başına 1/2 dönüşle bağlanır. Kayın ağacının yaprakları yalnızca 120 derece aralıklara sahiptir; yaprak başına 1/3 döner. Elma ağacı 144 derece ile 2/5 dönüş, kara çam 5/13. Eğer matematiğe meraklı iseniz, bu oranların nasıl tesadüfen olmayıp, her bir payın ve birimin birbirine hemen bitişik olanların toplamı olduğunu bulursunuz. (aşağıda görüldüğü gibi) Her iki sayı dizilimi de aynı benzer ve basit işlemi yapar: 1, 1, 2 (1+1), 3 (1+2), 5 (2+3), 8 (3+5), 13 (5+8), 21 (8+13), 34 (13+21), 55 (21+34), 89 (34+55), 144 (55+89), 233 (89+144), 377 (144+233), ...
Hiç yorum yok:
Yorum Gönder